

Container Systems R&D

Bill Hurt

Providing for safe, efficient disposition of DOE spent nuclear fuel

NSNFP Materials Development

- Advanced neutron absorbing (ANA) structural alloys for DOE SNF canisters
 - Development team: INEEL, Sandia, & Lehigh
- Remote welding/NDE systems
- Effects and elimination of hydrogen inside packages
- Aging effects in 316L canister welds
- Effects of reactive fission products on container materials

Gd-SS Effort - FY 2000

- Identify alloy compositions and processes suitable for production of Gd-bearing SS
- Start with 316L matrix composition
- Use conventional ingot metallurgy/hot work
- Achieve an alloy with good weldability
- Identify alloy(s) suitable for ASTM endorsement and ASME Boiler and Pressure Vessel Code approval

FY-00 Results

- Ingots were cast at compositions from 0.4-6 wt% Gd
- Hot forging was unsuccessful at 1060°C due to liquation
- Hot work at 950°C succeeded in providing wrought plate
- Gd-316L SS is expected to hot crack if welded
- Change to a nickel-base alloy should resolve issues

Mechanical Properties of Gd - SS Alloys

Allov % Gd	Yield Strenath ksi	Ultimate Strength ksi	Elongation %	Reduction of Area %	Impact Energy ft-lb
0	34.3	84.5	53	55	44
0.38	34.6	84.5	37	33	26
0.89	35.0	82.3	31	29	18
1.89	34.5	70.6	15	16	10

Conclusions - 316L-Gd

- Microstructure is very sensitive to Gd concentration
- Alloying elements (Ni and Cr) must be balanced and impurities (e.g., S, P, O, Si) minimized
- Liquation of (Fe,Ni,Cr)₃Gd phase during ingot breakdown at 1060°C
 - Cannot be eliminated with heat treatment
 - Forging at 950°C was successful but impractical
- Initial corrosion data show localized corrosion increases with increasing Gd

Stainless Steel as-cast microstructures exhibit at least four phases: austenite, ferrite (in two places), sigma, and (Ni,Fe-Cr)₃Gd

Providing for safe, efficient disposition of DOE spent nuclear fuel

Austenite

The Plan - FY-01 to FY-03

- Evaluate & test Ni-based alloy compositions:
 - UNS NO6455 and NO6059, alloyed with 2% Gd
 - UNS N06022 with 3% Gd
 - Ni-Cr matrix with 2% Gd
- Manufacture master heats for code tests
- Build alloy properties data set
- Provide repository corrosion and neutronics data
- Finalize Development
 - ASTM Material Specification
 - ASME Code acceptance for welded construction
 - NRC acceptance
 - RW approval for DOE SNF canisters

